Billiard

Problem:

Before a pool-billiard game starts, 15 balls form an equilateral triangle on the table. Under what conditions will the impact of the white ball (16th ball) produce the largest disorder of the balls?

- definitions
- solution by a simulation
- different forms of disorder
- conclusions

definitions

- disorder at the end
- chose of a standard table
 - * size: 1,2m times 2,4m
 - * diameter of the balls 5,2cm
 - * $\varrho_{\text{balls}} = 3\frac{kg}{l}$

simulation

- simulation concerns:
 - * 16 equal balls
 - * energy lost in ball-ball and ball-wall interactions
 - * roll friction
 - * nearly elastic hits
 - * different starting hits:
 - · 5 different positions for the white ball
 - \cdot speeds varies between $1\frac{m}{s}$ and $5\frac{m}{s}$
 - · angle varies between -50° and 50°
- simplifications:
 - * no pocket
 - * no spin
 - * no rolling energy

different disorder definitions

- useful definitions:
 - * boxcount
 - * stretched boxcount
 - * linear distances
 - * square distances
- indirect definitions:
 - * difference between two similar hits
 - * time

conclusions

- difference between simulation and reality
- general conclusions are:
 - * high energy
 - * play from behind
 - * play under a angle $\approx 45^{\circ}$
- other possibilities:
 - * 'jumping balls''
 (table takes most of the impulse)
 - * extreme spin (not very important in ball-ball interaction)